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Abstract

We present a study of exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau
(CGLE) equation. We show that exploding fronts occur in a region of the parameter space close to that where
exploding solitons exist. Explosions occur when eigenvalues in the linear stability analysis for the ground-state
stationary solitons have positive real parts. We also study transition from exploding fronts to exploding solitons and
observed extremely asymmetric soliton explosions.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Localized solutions in dissipative systems reveal some unusual properties that are unknown for such
solutions in conservative systems. One well-studied model for dissipative solitons is the cubic–quintic
complex Ginzburg–Landau equation (CGLE). This equation contains the basic terms describing the
most important physical phenomena occurring in passively mode-locked lasers[1]. The CGLE also
serves as a generic equation describing systems near sub-critical bifurcations[2,3]. It relates to a wide
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range of dissipative phenomena in physics, such as binary fluid convection[4], electro-convection in
nematic liquid crystals[5], patterns near electrodes in gas discharges[6] and oscillatory chemical reactions
[7].

One of the most recent discoveries related to this model is that of the so-called “exploding solitons”.
These were found in numerical simulations[8,9] and their existence has been experimentally confirmed in
a passively mode-locked solid state laser[10]. These solitons possess the interesting property of exploding
at a certain point, breaking down into multiple pieces, and subsequently recovering their original shape.
As noted above, exploding solitons can, in principle, be observed in a variety of applications.

Already in the first work on exploding (erupting) solitons[8], it was found that these localized objects
exist over a wide range of the system parameters (see Fig. 5 of[8]). A quick comparison with the results
of [11] shows that this range of parameters is, if not larger, then at least comparable with the range where
stable stationary solitons exist. On the one hand, this remarkable property should make their observation
a relatively easy task. On the other hand, we need to find the reasons why it happens.

Some explanations for the existence of exploding solitons and their unusual dynamics have been
presented in Ref.[12]. Namely, the stability of the soliton in the laminar stage of evolution, i.e. in the
state when the soliton enters its stationary regime of propagation, has been investigated in detail. This
study revealed the structure of eigenvalues and eigenfunctions of the stationary soliton that causes the
soliton to explode and then return to the same state afterwards.

In this work, we extend these studies and cover the case of front solutions. We have found, for the
first time, that front solutions can also reveal chaotic behavior similar to the exploding solitons. Their
shape can intermittently be covered with chaotic structures that tend to decrease after certain propagation
distance. The range of parameters where fronts explode is very close to the range where solitons have
explosive instability. Moreover, there is a continuous transition from exploding solitons to exploding
fronts. This means that the nature of explosions is similar in each case. We give here explanations for
the soliton explosions and assume that the same study can be done in the case of the exploding fronts. A
detailed study for the fronts will be given elsewhere.

Another interesting observation that we made numerically is the existence of extremely asymmetric
explosions. These happen mostly at one side of the soliton in spite of the fact that the equation, the
soliton and the initial conditions are symmetric relative to thet variable. The side of the soliton where the
explosion occurs alternate, so that explosions occur at the left and right sides of the soliton successively.
We give explanations for this unusual phenomenon.

2. Master equation

The cubic–quintic complex Ginzburg–Landau equation can be written:

iψz + D

2
ψtt + |ψ|2ψ + ν|ψ|4ψ = iδψ + iε|ψ|2ψ + iβψtt + iµ|ψ|4ψ. (1)

When used to describe passively mode-locked lasers,z is the cavity round-trip number,t is the retarded
time,ψ is the normalized envelope of the field,D is the group velocity dispersion coefficient, withD = ±1,
depending on whether the group velocity dispersion (GVD) is anomalous or normal, respectively,δ is the
linear gain-loss coefficient, iβψtt accounts for spectral filtering (β > 0), ε|ψ|2ψ represents the nonlinear
gain (which arises, e.g., from saturable absorption), the term withµ represents, if negative, the saturation
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Fig. 1. (a) Energy of the exploding soliton atε = 1.0 vs. the propagation distancez. (b) Evolution of the soliton profile for one
of the explosions: the one bounded by the vertical lines in (a).

of the nonlinear gain, while the one withν corresponds, also if negative, to the saturation of the nonlinear
refractive index.

Eq.(1)has a variety of localized solutions. These are stationary solitons, sources, sinks, moving solitons
and fronts with fixed velocity[13,14]. A multiplicity of solutions can exist simultaneously. For example,
solitons can exist in several forms and many of them can be stable for a certain range of values of the
equation parameters[15]. In addition to localized solutions with fixed shape there are pulsating solitons
[9], whose profile changes periodically, with the propagation distancez. Another interesting discovery is
the “exploding soliton”[8]. This localized solution belongs to the class of chaotic solutions. This solution
has intervals of almost stationary propagation, but, over and over, the instability develops, producing
explosions, to recover its stationary shape subsequently. An example of exploding soliton is shown in
Fig. 1.

The essential features of explosions, observed both theoretically[8,9] and experimentally[10], are:
(1) Explosions occur intermittently. In the continuous model, they happen more or less regularly, but the
period changes dramatically with a change of parameters. (2) The explosions have similar features, but
are not identical. (3) Explosions happen spontaneously, but additional perturbations can trigger them.
(4) One of the basic features of this solution is that the recurrence is back to the stationary soliton
solution.

For the set of parameters shown inFig. 1, explosions exist in a wide range of values ofε. Namely, we
can changeε from 0.44 up to 1.68 and the soliton solution will have the properties listed above. At the
values ofε higher than 1.68, the exploding soliton is transformed first into a pulsating solution and then
into a stable stationary soliton. On the other hand, whenε is below 0.44, it is transformed into a pair of
moving fronts which also have the property of exploding. Front explosions occur in a wide range ofε

which extends from 0.3 to 0.4. In the present paper, we report the first observation of these “exploding



J.M. Soto-Crespocor, N. Akhmediev / Mathematics and Computers in Simulation 69 (2005) 526–536529

Fig. 2. Front propagation for two different values ofε (a) 0.25 and (b) 0.26.

fronts”. These are front solutions with the profile which changes its shape chaotically but stays localized
and moves with constant velocity.

Within a certain range of parameters, Eq.(1) has front solutions that are stationary and stable. We
observed this in the interval 0.22 ≤ ε ≤ 0.25. Numerical examples are shown inFig. 2. Due to the
periodic boundary conditions of our numerical scheme, we have to deal with rectangular pulses. These
are essentially two fronts propagating from or towards each other, depending on the sign of the front
velocity. The continuous wave (CW) solution between the two fronts have a chirp so that the central part
of the rectangular pulse must have a sink or source solution to join the two CWs.

The parameterε chosen for the simulations shown inFig. 2admits stable fronts but not stable solitons.
Solitons do exist but they are unstable in this range ofε values. The sink (or source) is stable as we
can see from the figure but a slight change inε can actually switch the solution from being stationary
to being pulsating. Nevertheless fronts undergo little changes whenε changes from 0.25 to 0.26. Below
these values and up toε = 0.22 fronts are stable localized structures. Whenε increases, fronts become
unstable and even chaotic.

Examples of chaotic behavior of fronts are shown inFig. 3. Such behavior can be seen in the whole
interval of values 0.3< ε < 0.4. In analogy with exploding solitons[8] we can call these solutions
as“exploding fronts”. Topologically a front cannot disappear when the CW solution and the zero back-
ground are stable. Moreover, the velocity of the front is fixed and depends on the parameterε. We can
see fromFig. 3that the front, indeed, moves with constant and well defined velocity. However, its shape
is disturbed intermittently and attempts to recover the smooth step-like front shape are clearly visible.

As it happens in dissipative systems, there can be several stationary solutions for the same set of
parameters.Fig. 3 reveals the existence of two fronts with different velocities and background CW
solutions. Only one of them has the explosive instability while the other one is a stable front. This
conclusion agrees with our previous observations of a multiplicity of soliton solutions for the same set
of parameters[15].

Fronts and solitons can also coexist and any of them can be stable or unstable. Exact solutions for them
in analytical form can be found only for a limited range of parameters[14]. In the majority of cases, exact
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Fig. 3. Front explosions for two different values ofε (a) 0.3 and (b) 0.4. In (a) the initial condition isψ(0, t) = 1.9 exp (−[t/50]16)
and in (b) the corresponding soliton solution for these parameters.

solutions are unknown in analytical form but they can be found numerically. If the chaotic solution is
close to one of the stationary solutions for a given set of parameters, then it seems natural to study the
stability of that solution. Such study for the stability of stationary soliton is presented in the following
section. The stability of fronts can be studied in a similar way and will be presented elsewhere.

3. Stationary soliton solution and its stability

Let us suppose that the stationary soliton solution of the CGLE is:ψ(z, t) = ψ0(t) eiqz, whereψ0(t) is
a complex function oft with exponentially decaying tails, and thatq, its propagation constant, is real.
This function can be easily calculated numerically. A technique for finding it has been described, for
example, in Ref.[15]. The stationary front solution is a singular point of this dynamical system in an
infinite-dimensional phase space. Then, the evolution of the solution in the vicinity of this singular point
can be described by

ψ(z, t) = [ψ0(t) + f (t) eλz + g(t) eλ
∗z] eiqz, (2)

wheref (t) andg(t) are small perturbation functions (we assume|f, g| � |ψ0| for any t), andλ is the
associated perturbation growth rate. In general, allλ’s are complex numbers andf andg are complex
functions. Substituting(2) into the CGLE(1), we obtain:

(iλ− iδ− q)f eλz + (iλ∗ − iδ− q)g eλ
∗z +

(
D

2
− iβ

)
ftt e

λz +
(
D

2
− iβ

)
gtt e

λ∗z

+ 3(ν − iµ)|ψ0|4(f eλz + g eλ
∗z) + 2(ν − iµ)|ψ0|2ψ2

0(f ∗ eλ
∗z + g∗ eλz)

+ 2(1− iε)|ψ0|2(f eλz + g eλ
∗z) + (1 − iε)ψ2

0(f ∗ eλ
∗z + g∗ eλz) = 0. (3)
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Fig. 4. (a) The spectrum of eigenvalues in the complex plane for an exploding soliton. (b) Real parts of the discrete eigenvalues
(solid lines) vs.ε. At least one eigenvalue has a positive real part throughout the interval 0.3< ε < 1.7. Additional eigenvalues
of the discrete spectrum appear whenε < 0.6.

Separating terms with different functional dependencies onz, we obtain the following two coupled
ordinary differential equations:

Af + Bftt + Cg∗ = λf, A∗g∗ + B∗g∗
tt + C∗f = λg∗, (4)

where

A = δ− iq+ 2(ε+ i)|ψ0|2 + 3(µ+ iν)|ψ0|4, B = β + i
D

2
,

C = [ε+ i + 2(µ+ iν)|ψ0|2]ψ2
0. (5)

The technique for solving Eq.(4) numerically has been described in Ref.[12]. This technique is
essentially the same for soliton and front solutions. Here, we use the following parameters for the CGLE:
µ = −0.1, ν = −0.5,β = 0.15 andδ = −0.1, whileε varies from 0.3 to 1.7. In parts of this interval we
observe explosions for solitons and fronts. Higher values ofε produce stable soliton solutions, but for
lower values, at first fronts dominate and then any solution vanishes on propagation.

The complex plane, with the eigenvalues obtained as described in Ref.[12], is shown inFig. 4a. The
total spectrum consists of two complex conjugate eigenvalues with positive real part and a continuous
spectrum of complex conjugate eigenvalues, all with negative real parts. We have also found that the
two complex conjugate eigenvalues with positive real part turn out to be degenerate. There are two
eigenfunctions corresponding to the same eigenvalue, one is an even function oft and the other is odd.
The eigenvalue at the origin of the complex plane always exists, but it does not influence any dynamics.

This spectrum does not change qualitatively when we change the parameters of the system in the
vicinity of the chosen point. The real part of the discrete eigenvalue is shown inFig. 4bas a function
of ε. The real part is much smaller than|Im(λ)| whenε > 0.6. We can see that, whenε ≈ 1, the real
part has a maximum, and no other eigenvalues appear around this point. The second eigenvalue only
appears whenε is below 0.6. Hence, we expect that the qualitative behavior will be the same over a
wide range of values ofε, from 0.6 to 1.7, where this eigenvalue moves to the left half of the complex
plane.



532 J.M. Soto-Crespocor, N. Akhmediev / Mathematics and Computers in Simulation 69 (2005) 526–536

Fig. 5. Real (dotted line) and imaginary (dashed line) parts of (a) the even and (b) odd perturbation functions conveniently
normalized. The solid lines in (a) and (b) show the amplitude of the soliton itself.

The whole continuous spectrum of eigenvalues is located on the left half of the complex plane. The
corresponding eigenfunctions are much broader than the soliton width. These eigenfunctions are basically
continuous waves, of different frequencies and wavenumbers, which are perturbed in the central zone by
the soliton. In absence of the soliton, small amplitude radiation waves decay due toδ being negative. This
corresponds to the pair of eigenvalues on the r.h.s. edge of the continuous spectrum with real part exactly
equal to−0.1. All other eigenvalues of the continuous spectrum have real parts below−0.1 (i.e. larger
than 0.1 in absolute value), due to the influence of the spectral filtering on radiation waves of different
central frequencies.

As we mentioned before, each discrete eigenvalue is duplicated, or at least they coincide within the
accuracy of our calculations. On the scale ofFig. 4, they are completely superimposed. The eigenfunctions
corresponding to these eigenvalues are, respectively, even and odd functions oft. They are shown inFig.
5 for the caseε = 1. Each of these functions is nonzero mainly in the wings of the soliton and zero in the
middle thus consisting distinctively of two parts. The degeneracy of the eigenvalues is lifted if the two
parts become closer to each other.

4. Why do explosions happen?

In the presence of eigenvalues with positive real parts, the soliton evolution undergoes the following
transformation. Suppose, initially, we have the stationary solution with small perturbations. We note that
the real parts of the eigenvalues are relatively small, so that perturbations grow slowly. The imaginary parts
of the eigenvalues result in oscillations simultaneously with an increase in the size of the perturbations.
We also note that the soliton center is not influenced by this instability, because the eigenfunctions are
almost zero in the central part of the soliton.



J.M. Soto-Crespocor, N. Akhmediev / Mathematics and Computers in Simulation 69 (2005) 526–536533

After the initial linear growth of the perturbation, its amplitude becomes comparable with the soliton
amplitude, and the dynamics becomes strongly nonlinear. The nonlinearity mixes all perturbations, creat-
ing radiative waves. The amplitudes of radiative waves increase at the expense of the initial perturbation.
Consequently, the fraction of the initial perturbation within them becomes small. The solution at this
stage appears to be completely chaotic. However, the solution remains localized, both in amplitude and in
width, due to the choice of the system parameters. In particular, the maximum field amplitude is limited
due to the fact thatµ is negative. In addition, a positiveβ ensures that the total width in the frequency
domain also stays finite, provided that other parameters are within certain ranges. It is also important that
the stationary soliton shape is fixed, thus providing the point of return.

As all radiative waves have eigenvalues with negative real parts, they decay and quickly disappear,
since the eigenvalues for most of them have much larger negative real parts than the initial perturbation.
This means that the solution returns to the state of a stationary soliton with a small perturbation that has
an eigenvalue with positive real part. As the real part of the discrete eigenvalue is relatively small, the
instability develops again later, thus repeating the whole period of the evolution described above. This
process is repeated indefinitely along thezaxis.

One cycle of this evolution is shown, schematically, inFig. 6. The fixed point, shown by a black dot in
this figure, corresponds to the stationary soliton solution. It can be classified as a stable–unstable focus,
because all the eigenvalues in the stability analysis appear as complex conjugate pairs. We stress here
that our system has an infinite number of degrees of freedom, and that the evolution actually occurs
in an infinite-dimensional phase space. It cannot be reduced to a finite-dimensional problem, as all the
eigenvalues play essential roles in the dynamics. As the fixed point is unstable, the trajectory leaves it in
the direction in the phase space defined by the discrete eigenvalues. This motion is exponential as well
as oscillatory. After complicated dynamics in the whole phase space, the trajectory, being homoclinic,
returns to the same fixed point but along a different route, as defined by the continuous spectrum. This

Fig. 6. One cycle of evolution of an exploding soliton in an infinite-dimensional phase space.
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return is also accompanied by oscillations, as all the eigenvalues in this problem are complex. This
scenario is similar to the one described by the Shil’nilov’s theorem[12,16]. Similar explanations can be
given for the exploding front solutions.

5. Extremely asymmetric soliton explosions

The problem of front explosions is tightly related to the problem of soliton explosions. In general, the
transition from solitons to fronts happens along a certain boundary in the parameter space. Crossing this
boundary when decreasingε results in splitting of solitons into two fronts as shown inFig. 3. The fronts
separate and move away from the center. If explosions existed in the region of solitons they continue to
exist after the transition to fronts. Let us recall that the soliton perturbation functions inFig. 5are nonzero
at the soliton wings but close to zero in the soliton center. If the soliton splits into fronts the two parts of
the perturbation function move away each attached to the corresponding front. Hence, explosions at each
front can occur independently.

In the case of a soliton, the two parts of the perturbation function, namely, the left-hand side and the
right-hand side perturbations are weakly interacting because of the slight overlapping between them. As a
consequence, the even and odd modes of perturbation have slightly different eigenvalues. This difference
was small before but appears clearly for the set of parameters given inFig. 7. The left- and right-hand side
perturbations located at the the soliton wings are still well separated. However, the difference between the
eigenvalues can be well distinguished numerically. Because of this difference, the initial even symmetry
of any soliton solution can be lost on propagation during the explosions. The explosions can change
dramatically for the values of the system parameters where the splitting of the eigenvalues is nonzero.

Strictly speaking, explosions are never symmetric. The chaotic soliton profile during the explosions is
neither even or odd function oft. It becomes close to the even function at the laminar regime of evolution.
The difference between the eigenvalues of even and odd perturbation functions makes the explosions
asymmetric in the sense that each explosion occurs predominantly at one side of the soliton. Even if
the initial condition was symmetric and several initial explosions were at both sides of the soliton this

Fig. 7. (a) An even and (b) odd perturbation functions for the soliton. The eigenvalues for them are given inside each plot. The
difference is of the order of 10−5 for the set of parameters used in this case.
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Fig. 8. (a) Extremely asymmetric soliton explosions for the set of parameters given in the figure. (b) The position of the field
maxima versusz. The initial input being the unperturbed soliton solution. Extremely asymmetric explosions occur afterz = 400.

symmetry is broken after certain propagation distance.Fig. 8shows that for certain equation parameters
a soliton can have extremely asymmetric explosions localized predominantly on one side of the pulse.
We can see two of such extremely asymmetric explosions inFig. 8a. The explosion switches the side of
the soliton where it occurs after each event. This is clearly seen inFig. 8b. The maximum of the optical
field versusz shifts alternatively to the left or right-hand sides after every consecutive explosion. As a
result, the position of the soliton shifts as well. The “vertical” lines in this figure indicating that at the
very zenith of the explosion the peak amplitude is delocalized.

6. Conclusions

In conclusion, we have found, for the first time, exploding front solutions of the complex cubic–quintic
Ginzburg–Landau (CGLE) equation. These have common features with the exploding soliton solutions.
Explanations for the explosions of solitons based on the linear stability analysis of a stationary solution,
are given. We have also found that, at certain values of the parameters, solitons can have extremely
asymmetric explosions. These are tightly related to the exploding front solutions.
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